《科学革命的结构》

T.S.库恩著 

 

II  走向常规科学

 

 


  在本文中,“常规科学”是指严格根据一种或多种已有科学成就所进行的科学研究,某一科学共同体承认这些成就就是一定时期内进一步开展活动的基础。今天的一些初级和高级教科书正在重新估价这些成就,尽管并不怎么符合它们本来的面貌了。这些书解释了公认的理论,说明了这些理论许多或全部鲍有效应用,并同示范性的观察和实验作了对比。在十九世纪初期这些书还没有流行起来以前(在刚刚成熟的科学中甚至直到最近),许多科学经典名著也起过同样的作用。亚里士多德的《物理学》、托勒密的《至大论》、牛顿的《原理》和《光学》、富兰克林的《电学》、拉瓦锡的《化学》以及莱伊尔的《地质学》——这样一些著作,都在一定时期里为以后几代的工作者暗暗规定了在某一领域中应当研究些什么问题,采用些什么方法。所以能够这样,因为这些著作具备两个根本的特点。这些著作的成就足以空前地把一批坚定的拥护者吸引过来,使他们不再去进行科学活动中各种形式的竞争。同时,这种成就又足以毫无限制地为一批重新组合起来的科学工作者留下各种有待解决的问题。 

  凡是具备这两个特点的科学成就,此后我就称之为“规范”。这是一个同“常规科学”密切有关的术语。我采用这个术语是想说明,在科学实际活动中某些被公认的范例——包括定律、理论、应用以及仪器设备统统在内的范例——为某一种科学研究传统的出现提供了模型。这就是一些历史学家在“托勒密(或哥白尼)天文学”、“亚里士多德(或牛顿)力学”、“微粒(或波动)光学”等标题下所描述的那种传统。学习这种规范,包括许多比前面所举的还要专门得多的规范,主要是使一个新手准备好参加那个此后他即工作于其中的科学共同体。他在那里所遇到的人,也是从同一模型中学到专业基础的,因此在他们以后的活动中,就不大会再在基本原则方面碰到重大分歧。根据共同规范进行研究的人们,也受同样的科学实践规则和标准所制约。这种制约以及由此所造成的表面上的一致,正是常规科学的前提,也是某一种研究传统形成和延续的起源。 

  本文经常用规范概念代替各种熟悉的观念,因此,为什么要引进这个概念,还要作一些说明。具体科学成就作为专业性的规定,为什么要比由此抽象出来的概念、定律、理论和观点更为重要呢?共有规范对于科学中的新手来说,在什么意义上是一个逻辑上不能再分成具有同样功能的更小部分的基本单位呢?当我们在第 V节中碰到这些类似问题时,怎样回答这些问题,对于了解常规科学以及有关的规范概念,是具有根本意义的。但是,这种更加抽象的讨论,还要取决于同作用中的常规科学范例或规范范例以前联系得怎样。特别是,如果注意到没有规范,至少是没有上面所举那种毫不含糊而又有约束力的规范,也可以进行某种研究,那么,常规科学和规范这两个相互有关的概念就清楚了。有了一种规范,有了规范所容许的那种更深奥的研究,这是任何一个科学部门达到成熟的标志。 

  如果历史学家追溯一组挑选出来的现象,他很可能碰上物理光学历史所表现出来的那种发展模式,尽管可能略有变形。今天的物理教科书告诉学生,光是光子,也就是某种波动性和某种粒子性的量子力学实体。由此再研究下去,或者说,根据更精确的数学特征(由此得出语言特征)而研究下去。但是,对光的这种特征的描述,还只有半个世纪。本世纪初普朗克、爱因斯坦和其他人在进行这种描述以前,物理教科书还在教导说光是横波运动,这种认识扎根于一种规范之中,一种从十九世纪初杨( Young)和弗雷斯内尔(Fresnel)的光学著作中最后得出来的规范。波动理论起初也并不是大部分光学工作者所接受的。十八世纪中牛顿的《光学》为这个领域提供了规范,它教导说,光是物质粒子。那时的物理学家们都在寻求光粒子对固体的压力的证据,而早期的波动理论家们却不这样做。① 

  物理光学中规范的这种转化,就是科学革。一种规范经过革命向另一规范逐步过渡,正是成熟科学的通常发展模式。但这种模式没有牛顿以前那个时代的特征,我们在这里所关心的也正是二者的差别。从远古开始直到十七世纪末为止,在这段历史时期中没有出现过一种大家都能接受的关于光的本质的看法。相反,总是有许多互相竞争的学派和小流派,其中大多数都拥护伊壁鸠鲁、亚里士多德或托勒密理论的某种变形。一些人把光看作是从物质客体发射出来的粒子;而另一些人认为,光是介入物体和眼睛之间的某种介质的变态;还有的用介质同眼睛发射物之间的相互作用来解释光;此外还有其他各种不同的组合和变形。每一个相应的学派都从它同某一种形而上学的关系中吸取力量,每一个都强调它的理论最能解释的那一组光学现象才是合乎规范的观测。为此,它也精心研究了另外一些观测,以免为进一步的研究留下了悬而未决的问题。② 

  ①约瑟夫·普列斯特利( Joseph 

  Priestley):《关于视觉、光和色的发现的历史和现状》(伦敦;1972年),第385~39O页。 

  ②瓦斯科·隆奇( Vaseo 

  Ronchi):《光学史》;让·塔顿(Jean Taton)译(巴黎,1956年),第i-iv章。 

  所有这些学派都在各个不同时代为物理光学的主要概念、现象和技巧作出了重大贡献,而牛顿则从中引出了第一个几乎为大家一致公认的规范。任何一个关于科学家的定义,如果排除了这些不同学派中富有创造性的成员,也就排除了这些学派的现代继承人。这些人的确是科学家。但如果回顾一下牛顿以前的物理光学。人们完全可以得出结论说,那时这方面的工作者虽然是科学家,而他们工作的最后成果却不怎么够得上科学。既然可以不要什么共同的信念,每一个物理光学家都感到必须从根本上重建这门科学。这么一来,他要支持些什么观测和实验,也就可以相对自由地加以选择,因为并不存在一套每一个光学家都必须加以采纳的标准方法,或必须加以解释的标准现象。这种情况下所产生的 

  一些著作,就总是对准其他学派的人,而不是对准自然界。这种模式,在今天许多富有创造性的领域中也不陌生,同重大发现和发明之间也没有矛盾。但这却不是牛顿以后物理光学所采取的发展模式,也不是其他自然科学今天所熟悉的模式。 

  十九世纪上半叶电学发展的历史可以提供一个更加具体、更为熟悉的例子,说明一门科学在获得第一个普遍接受的规范以前是怎样发展起来的。在那时候,几乎有多少重要的电学实验家,象豪克斯比( Hauksbee)、格雷(Gray)、德札古利埃(Desaguliers)、杜·费伊(Du 

  Fay)、诺列特(Nollett)、沃森(Watson)、富兰克林等人,对电的本质就有多少看法。在所有这许多电的概念中,存在着某些共同的东西——这许多概念,都是从当时指导一切科学研究的机械粒子哲学的某种变形中片面地引伸出来的。而且,这些都是真正科学理论的组成部分,它们部分地来源于实验和观察,部分地又决定着怎样选择和解释研究中新出现的问题。虽然所有这些实验都是电学实验,虽然绝大部分实验者都读过彼此的著作,但他们各自的理论却只不过象是同一家族中的不同成员。① 

  ①杜安·鲁勒( Duan 

  Roller)和杜安· H· D·鲁勒(Duane H·D·Roller):《电荷概念的发展:电学从希腊人到库伦》(《哈佛实验科学事例史》第8例,马萨诸塞州,坎布里奇,1954年); 

  I.B柯亨(Cohen):《富兰克林和牛顿:探索牛顿思辨的实验科学理论以及由此产生的富兰克林电学著作之例》(费拉德尔菲亚,1956年),第Xii~Xii章。对下一段中某些分析的细节,我感谢我的学生约翰·L·布隆尚未发表的文章。在此文发表前,对富兰克林的规范的某种更展开、更确切的说明,见T.S.库恩:《科学研究中教导作用》,载A.C.克隆比(Crombie)编:《1961年7月9~15日牛津大学科学史专题会议》。即将由海涅曼教育书店出版。  

  一批早期的理论家们根据十七世纪的实践,把吸引和摩擦起电看作是基本的电现象。这些人倾向于把排斥作为机械回跳所产生的二级效应,并又尽可能拖延对格雷新发现的电传导效应进行讨论和系统研究。另一些“电学家”(如他们所自称的)把吸引和排斥同样看成是电的基本表现,并据以修改他们的理论和研究工作。(实际上他们的人数很少——甚至连富兰克林的理论也从没有充分说明过两个带负电荷的物体为什么互相排斥。)但是他们在同时说明任何一种最简单的导电效应时,也碰上了同前一批人一样的困难。这种效应又为第三批人提供了一个出发点,他们倾向于把电说成是可以穿越导体的“流体”,而不是一种由非导体发射出来的“以太”。于是他们又面临着怎样把他们的理论同大量的吸引排斥效应协调起来的困难。只是通过富兰克林和他的直接后继者的工作才有了一种新的理论,可以同样简便地说明几乎所有这些效应,从而也可以给下一代“电学家”的研究工作提供一个共同的规范。 

  象数学、天文学这样一些部门,早在史前时期就有了第一个明确的规范,再象由专业的分化和重组而形成的生物化学,也已臻于成熟。除了这几个特殊部门以外,上文所勾画的情况在历史上还是很典型的。虽然我不得不继续采取这种不恰当的简单化作法,把连续的历史事件硬套上一个简直是信手拈来的名字(例如牛顿或者富兰克林),但我却认为,这样的根本不同正是表现了这样一些学科的特点,象亚里土多德以前对运动、阿基米德以前对静止的研究、布来克( BIack)以前对热的研究、波义耳和波尔哈夫以前的化学的研究、胡顿(Hutton)以前对历史地质学的研究等等。在生物学的各个分支中——例如对遗传的研究——有了第一个为人们所普遍接受的规范,还是最近的事;而在社会科学中,究竟哪些分支已具备这种规范,还完全悬而未决。历史表明,要使科学研究中意见完全一致,实在是艰巨得很。 

  但历史也表明了在这条道路上为什么会碰到这样的困难。如果没有一种规范或某种候补规范,凡是可能合乎某一门科学发展的事实,看起来都会同样地合适。结果,最初搜集事实的活动更近乎一种随机活动,而后来科学的发展却使之习以为常了。而且,因为没有必要寻求什么样的更隐秘的信息,最初搜集事实一般也只限于某些信手拈来的材料来源。在由此聚成的蓄水池中,也包含着那些易于受到偶然的观察、实验以及某些更奥秘材料影响的事实,都可以从医药、制定历法和冶金这一类行业中重新找到。由于这些行业可以随时提供不能按照因果关系发现的事实,因而在新科学的涌现中,它们的工艺经常起着不可缺少的作用。 

  这样来搜集事实,对许多重要科学的起源尽管很重要,但是只要查阅一下普林尼( Pliny)的百科全书式著作或培根的自然史就会发现,这里有个泥坑。这样所产生的文献究竟算不算科学,人们会有所犹豫。培根关于热、色、呼吸、开矿等的“历史”中充满了消息,其中有一些也很深奥难解。但是在这些历史中,他却把那些后来证明是很能说明问题的事实(如通过混合而加热),同那些在一定时期内由于过分复杂而根本综合不到理论中去的事实(如粪堆中的热),杂然并列起来了。①还有,任何描述总是不完全的,因此,在一部标准自然史的大量详尽叙述中,也总会遗漏一些后来科学家恰好就在这里找到的重要启示。比方说,几乎没有一部早期的电学“历史”曾经提到过,摩擦过的玻璃棒把草屑吸引过来以后又会把它弹回去。这似乎是机械效应,不是电效应。②而且,按照因果关系收集事实的时间很少,也没有必需的方法,因而自然史常常把上面我们所举那些描述同我们现在还不大能肯定的描述并列起来,比方说关于阻抗生热(或冷)的描述。③只有在十分偶然的情况下,例如古代静力学、动力学和几何光学在没有什么预定理论指导下所搜集到的事实,才足以明确地宣告容许第一个规范的涌现。 

  ①参见培根《新工具》一书中关于热的自然史纲要,《弗兰西斯·培根著作集》第 VIII卷,J、斯拜丁(Spedding)、R.L.埃利斯(Ellis)和I.D.希兹(Heath)编(纽约, 

  1869年),第179~203页。  

  ②鲁勒和鲁勒,同上书,第 14、22、28、43页。只是在培根书中最后引用了这些话之后,排斥效应作为一种明确的电效应才得到普遍的承认。  

  ③培根,前引书,第 235、337页:“微温的水比完全冷却的水更易于结冰。”对这种奇特观察的早期历史,在下书中有一部分记载:马歇尔·克莱杰特(Marshall 

  Clagett):《乔温尼·马利安尼(Giovani Marliani)和中世纪晚期物理学》(纽约;194O年);第IV章。 

  这就是在一门科学早期发展阶段上建立这个阶段所特有的各种学派的情况。只有有了理论上和方法论上的信念,才能进行选择、评价和批评;如果没有这种信念,至少是某种隐含的信念,任何一部自然史都无法得到解释。如果这种信念的内容没有隐含在所搜集的事实之中——这种情况就不只是现成的“纯事实”了——那就必须通过流行的形而上学、其他科学或个人和历史的偶然事件从外界提供这种信念。因此毫不奇怪,在任何一门科学的早期发展阶段,不同的人对同样一些领域的现象,尽管未必都是同样一些具体现象,却会作出全然不同的描述和解释。令人吃惊的,而在这些我们称之为科学的领域中也许是最令人吃惊的是,初期的这种分歧总是大部分不见了。 

  这些分歧,的确在相当大的程度上不见了,而且简直是一劳永逸地不见了。而且,通常总是由于一个前规范学派的成就使这些分歧不见了。这个学派由于它所特有的信念和先入之见,总是只强调那个太大而又太不发达的消息库中的某一特殊部分。有些电学家把电看成是一种流体,并从而特别强调它的传导作用,他们正好提供了一个出色的事例。按照这个信念,他们难以应付已知的大量吸引排斥效应,于是有些人就设想把这种电流体用瓶子装起来。他们努力的直接成果就是莱顿瓶,偶尔随机探索自然的人永远也不会发现这种装置。事实的确是在十八世纪四十年代早期,至少是由两个研究者独立提出来的。①富兰克林几乎从一开始进行电学研究时,就特别注意解释这种新奇而结果又特别有意义的专门仪器。他在这方面的成就,提供了使他的理论成为一种规范的最有力的论据,尽管仍然不能充分解释所有已知的.电排斥现象。②一种理论成为规范,一定要比其他竞争对手更好,但并不一定要解释、事实上也从未解释过一切可能碰到的事实。 

  ①鲁勒和鲁勒,前引书,第 51~54页。  

  ②麻烦的是带负电物体的相互排斥;可参阅柯亨;前引书;第 491~494、531~543页。 

  电流体理论为一小部分相信这个理论的人所提供的东西,后来富兰克林的规范也为全体电学家提供了。这个规范指明了哪些实验值得作,哪些则由于只是针对次要现象或明显的复合现象而不值得。只有规范才能有效地完成这个任务,这部分是因为学派内部的争论使他们不需要再去不断地重申那些基本原则,部分则因为科学家们自信路子走对了,从而鼓舞了他们从事更精确、更深奥、也更费劲的研究工作。①电学家们结成的集体不要再去注意所有一切电学现象了,因而他们就有可能去设计更专门得多的装置,比以往任何电学家都要更加顽强而系统地运用这些装置,以便更细心地追踪某一种选定的现象。事实搜集和理论表述都成了高度有目的的活动。电学研究从而更加有效了,效率也更高了,它从社会方面证实了培根的一句锐利的方法论格言:“从错误中比从混乱中更易于出现真理”。② 

  下一节我们将考察这种高度有目的的或者说根据规范所进行的研究工作,但先要扼要说明,规范的涌现怎样影响到这个领域工作集体的结构的。在自然科学的发展中,当个人或集体第一次达到了能吸引下一代大多数实际工作者的综合时,老的学派就逐渐消逝了。这部分是由于这个学派的成员转变到新的规范方面去。但是总会有那么一些人墨守某种老观点,于是他们干脆被排除出这个行业,从此,他们的工作就再也无人理睬了。新的规范意味着这个领域有了新的更严格的规定。谁如果不肯或不能同它谐调起来,就会陷于孤立,或者依附到别的集团那里去。③在历史上,这些人往往干脆呆在哲学部门里,反正那么多的专门科学都是从这里孳生出来的。这些迹象表示,有时正是由于接受了一种规范,才使以前只是关心研究自然界的那批人成了同行,或者至少建立了一门学科。在这些科学中(而不是在医学、技艺、法律这样一些领域中,因为它们主要的存在理由是外界社会需要),形成专门化的期刊,创立专家的学会,并在课程中要求专门地位,通常都同一个集团第一次接受某一种规范有联系。至少,从一个半世纪以前科学的专门化第一次成为制度起,直到最近专门化知识已建立了威信为止,情况就是这样。 

  ①应当指出,接受富兰克林的理论并没有完全结束一切争沦。 1759年罗勃特·西莫(Robert Symmer)提出了两种流体说;此后许多年中,电学家就是按照电是一种流体还是两种流体而分开来的。但是这个问题的争论只能证实,上面所说普遍承认的成就就是这样把这个专业联结起来了。电学家们虽然在这一点上还有分歧,却已迅速地提出结论:任何实验都不能把这两种理论区别开来,因此,二者是等效的。这以后,两个学派都能够而事实也都利用了富兰克林的理论所提供的一切好处(同上书,第543~546、548~554页)。  

  ②培根,前引书,第 21O页。  

  ③电学史提供了可从普列斯特利、开尔文等人的经历中重现的出色事例。富兰克林报告说,那个世纪中叶欧洲大陆上最有影响的电学家诺列特“生前看到他自己是他那个小流派的最后一人;除了他自己优秀的谪传门徒 B.君以外”(马克斯·费兰德[Max 

  Farrand]编:《本杰明·富兰克林回忆录》[加利福尼亚州伯克利;1949年]第384~386页)。但更有趣的是。所有的学派—直都是愈来愈从专业学科中独立出来。试以占星术为例,它一度是天文学的一个组成部分,再看看从十八世纪末延续到十九世纪初的一个以前很受重视的“浪漫主义”化学传统。这正是查尔士·C·吉利斯庇(Charles 

  C.Gillispie)在下列著作中讨论过的那种传统:《百科全书派和科学中的雅各宾哲学:关于观念和结论的研究》,《科学史中的关键问题》,马歇尔·克莱杰特编(威斯康辛州康迪逊,1959年),第256~289页;《拉马克进化论的形成》,《世界科学史成就》第XXXVII卷(1956年),第323~338页。  

  对科学界更严格的限定,还带来了其他的后果。当个别科学家可以接受某一种规范时,他的主要工作就再也不需要从起码的原则开始,证明每一个引进的概念都合理,来重新确立他的研究领域了。这一些都可以留给教科书作者们。而有了一本教科书,科学家就可以从教科书达不到的地方开始研究,从而可以高度集中到科学界所关心的最微妙、最深奥的自然现象中去。这样做,他的研究公报就要开始改变形式了。对这种公报形式的演化,过去研究得太少了,但它在现代的作用却对所有人都是显而易见的,对许多人也是沉闷的。科学家的研究工作再也不会象以前那样,体现在写给那些对此有兴趣人们的书中了,象富兰克林的《关于电的……实验》或达尔文的《物种起源》。相反,通常只是写一篇简要的文章给同行们看,这些人肯定都知道共有的规范,而且也只有他们能够阅读这些写给他们的文章。 

  今天的科学书籍,通常要么是教科书,要么是关于某一方面的科学生活的追溯。科学家写这样一本书,很可能会发现他在专业方面的声誉不是得到提高,而是受到损害。只有在各门科学更早的前规范发展阶段上,。这样的书一般才可以同在其他创造性领域中那样,仍然保持与专业成就的关系。只有在那些仍然把这种书作为一种学术交流工具的领域中,不管有没有专题文章,专门化的界限还是很不严格,外行们还以为只要读了研究工作者的原始报告就可以跟上去。在数学和天文学中,从古以来研究报告就不再是受过一般教育的读者们所能理解的。在力学中,在中世纪后期研究工作已同样深奥,只是到十七世纪早期,在新规范取代曾指导中世纪研究工作的老规范的过程中,才有过一个短暂的时期力学重新为一般人所理解。在十八世纪结束以前,电学研究也开始需要对外行们进行解释,而物理科学的大部分其他分支,到十九世纪一般人就再也不容易接受了。同样经过这两个世纪,从生物科学的各个不同部门中也可以概括出这种过渡来。社会科学有些部门,今天可能还处于这样的过渡之中。专业科学家同其他领域的同行们之间的鸿沟,愈来愈大了,这种哀叹虽已习以为常,肯定也很合理,但人们却太不注意这个鸿沟同科学进展固有机制之间的根本关系了。 

  从史前期以来,研究领域一个接着一个都跨过了历史学家称之为一门科学的前史和本史之间的分水岭。这些科学向成熟期过渡,我在这里必须顺序加以讨论,实际上却很少有象我说的那么突然,那么分明。但历史上的这种过渡也不是渐进的,就是说,也不是整个领域一起发展的。电学作者们关于电学现象,在十八世纪前四十年中比他们十六世纪的先驱们拥有多得多的知识。在 1740年以后的半个世纪中,并没有几项新的电学现象增加到他们的清单上。不管怎样,在一些重要方面,卡文迪什(Cavendish)、库仑(Coulomb)和伏特(Volta)在十八世纪最后三十几年中的电学著作距离格雷、杜·费直至富兰克林的著作,比这些十八世纪早期的电学发现者的著作距离十六世纪这方面的著作,要远得多了。①只有在1740年到1780年之间,电学家才第一次有可能把建立这样一个领域视为理所当然。从那时起他们就深入进到一些更具体、更深奥的问题上,随后也愈来愈用专题文章的形式把结果报告给其他电学家,而不是用书籍的形式报告给广大知识界。他们作为一个集体,已经达到了古代天文学家的水平,也达到了学生们在中世纪关于运动、在十七世纪晚期关于物理光学、在十九世纪早期关于历史地质学的水平。也就是说,他们已获得一种证明有可能指导整个集体进行研究的规范。除了事后认识到这种好处,很难另外找到什么标准可以明确宣布某一个领域成为一门科学。 

  ①在富兰克林以后,有以下几方面的巨大发展:电探测器的灵敏度,第一种可靠的普遍推广的测量电荷的技术,电容概念以及与最新提炼的电压观念之间的关系的进展。还有静电力的定量等。可参阅鲁勒和鲁勒,前引书,第 66~81页;W.O.沃克(walker):《十八世纪对电荷的探测和估量》,《科学年鉴》,第1卷(1936年),第 

  66~1O0页;爱德门德·霍普(Edmund Hoppe):《电学研究》(莱比锡,1884年)第1部,第iii~iv章。 

前一页
回目录
后一页
秀莎网